152 research outputs found

    Accurate Liability Estimation Improves Power in Ascertained Case Control Studies

    Full text link
    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in non-randomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (Liability Estimator As a Phenotype, https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and demonstrate that this can lead to a substantial power increase

    Modelling the US Federal Spending Process: Overview and Implications

    Get PDF
    The object of study is the US Federal budget process - an institutional process of increasing prominence in US and world affairs - which is unique in generating quantitative data for scholarly research. The authors first outline their rigorous, but simple, econometric models of how budget decisions are made, coordinated, and implemented and then trace the implications of their high-inertia view of the process for the US economic cycle. They propound a presidential and Congressional ambition model of current and postwar cyclical economic difficulties, including stagflation, in terms of a macroeconomic model of the US economy in which federal governmental expenditure is endogenous. The chapter concludes with speculation on the disastrous consequences for society of the growth of a sluggishly adaptable bureaucratic process operating in a rapidly changing economic and social environment

    Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy

    Get PDF
    Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations

    The contribution of genetic variants to disease depends on the ruler

    Get PDF
    Our understanding of the genetic basis of disease has evolved from descriptions of overall heritability or familiality to the identification of large numbers of risk loci. One can quantify the impact of such loci on disease using a plethora of measures, which can guide future research decisions. However, different measures can attribute varying degrees of importance to a variant. In this Analysis, we consider and contrast the most commonly used measures-specifically, the heritability of disease liability, approximate heritability, sibling recurrence risk, overall genetic variance using a logarithmic relative risk scale, the area under the receiver-operating curve for risk prediction and the population attributable fraction-and give guidelines for their use that should be explicitly considered when assessing the contribution of genetic variants to disease

    Bayesian estimation of genetic parameters for multivariate threshold and continuous phenotypes and molecular genetic data in simulated horse populations using Gibbs sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Requirements for successful implementation of multivariate animal threshold models including phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated, resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic marker information were simulated for one of the liabilities. Different scenarios with respect to recombination rate between genetic markers and QTL and polymorphism information content of genetic markers were studied. For each scenario ten replicates were sampled from the simulated population, and within each replicate six different datasets differing in number and distribution of animals with trait records and availability of genetic marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used for the genetic covariance matrix.</p> <p>Results</p> <p>Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly underestimated between the continuous trait and binary traits of low heritability, under- or overestimated between the continuous trait and binary traits of moderate heritability, and overestimated between two binary traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of parameter estimates more than mere increase of the number of informative animals from one generation. Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.</p> <p>Conclusion</p> <p>Combined use of phenotype and genotype information on parents and offspring will help to identify agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple trait selection schemes.</p

    Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on estimated variance components. This study was aimed at: (1) estimating the heritability of bacteria negative SCS, bacteria positive SCS, and infection status, (2) estimating phenotypic and genetic correlations between bacteria negative and bacteria positive SCS, and the genetic correlation between bacteria negative SCS and infection status, and (3) evaluating the impact of imperfect diagnosis of infection on variance component estimates.</p> <p>Methods</p> <p>Data on SCS and udder infection status for 1,120 ewes were collected from four Valle del Belice flocks. The pedigree file included 1,603 animals. The SCS dataset was split according to whether animals were infected or not at the time of sampling. A repeatability test-day animal model was used to estimate genetic parameters for SCS traits and the heritability of infection status. The genetic correlation between bacteria negative SCS and infection status was estimated using an MCMC threshold model, implemented by Gibbs Sampling.</p> <p>Results</p> <p>The heritability was 0.10 for bacteria negative SCS, 0.03 for bacteria positive SCS, and 0.09 for infection status, on the liability scale. The genetic correlation between bacteria negative and bacteria positive SCS was 0.62, suggesting that they may be genetically different traits. The genetic correlation between bacteria negative SCS and infection status was 0.51. We demonstrate that imperfect diagnosis of infection leads to underestimation of differences between bacteria negative and bacteria positive SCS, and we derive formulae to predict impacts on estimated genetic parameters.</p> <p>Conclusions</p> <p>The results suggest that bacteria negative and bacteria positive SCS are genetically different traits. A positive genetic correlation between bacteria negative SCS and liability to infection was found, suggesting that the approach of selecting animals for decreased SCS should help to reduce mastitis prevalence. However, the results show that imperfect diagnosis of infection has an impact on estimated genetic parameters, which may reduce the efficiency of selection strategies aiming at distinguishing between bacteria negative and bacteria positive SCS.</p

    Quantitative genetics of immunity and life history under different photoperiods

    Get PDF
    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality

    The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling

    Get PDF
    Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic (ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease, i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator

    Anti-tumour activity of bisphosphonates in preclinical models of breast cancer

    Get PDF
    There is increasing evidence of anti-tumour effects of bisphosphonates from pre-clinical studies, supporting a role for these drugs beyond their traditional use in treatment of cancer-induced bone disease. A range of model systems have been used to investigate the effects of different bisphosphonates on tumour growth, both in bone and at peripheral sites. Most of these studies conclude that bisphosphonates cause a reduction in tumour burden, but that early intervention and the use of high and/or repeated dosing is required. Successful eradication of cancer may only be achievable by targeting the tumour cells directly whilst also modifying the tumour microenvironment. In line with this, bisphosphonates are demonstrated to be particularly effective at reducing breast tumour growth when used in combination with agents that directly target cancer cells. Recent studies have shown that the effects of bisphosphonates on breast tumours are not limited to bone, and that prolonged anti-tumour effects may be achieved following their inclusion in combination therapy. This has opened the field to a new strand of bisphosphonate research, focussed on elucidating their effects on cells and components of the local, regional and distal tumour microenvironment. This review highlights the recent developments in relation to proposed anti-tumour effects of bisphosphonates reported from in vitro and in vivo models, and summarises the data from key breast cancer studies. Evidence for effects on different processes and cell types involved in cancer development and progression is discussed, and the main outstanding issues identified

    Estimation of allele frequency and association mapping using next-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., < 15<it>X</it>). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates.</p> <p>Results</p> <p>We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data.</p> <p>Conclusions</p> <p>Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.</p
    corecore